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Corollary (Greither-Pareigis (1987) and Byott (1996))
L/K Galois with group I'. For any group G with |G| = |I'

?

_ [Aut(D)]
e(l,G) = TAU(G)] e(r,G).

e(l', G) := |{Hopf-Galois structures on L/K of type G}|;
e'(I, G) := |{regular subgroups of Hol(G) isomorphic to I'}|.
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Guarnieri, Vendramin 2017
G = (G, ") group. The following are equivalent:
@ A regular subgroup N < Hol(G)
@ A group operation o on G st (G, -,0) is a skew brace,
forg,h,ke G
(gh)ok=(go k)k_l(h o k)

and (G,0) ~ N
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In order to enumerate both the HGS on Galois extensions and the
SB we study

regular subgroups of the holomorph
of a group G

Guarnieri, Vendramin 2017
G = (G, ") group. The following are equivalent:
@ A regular subgroup N < Hol(G)
@ A group operation o on G st (G,-,0)isa SB, (G,0) ~ N

Byott (GV17)
G = (G, ) group. There is a bijective correspondence between
- isomorphism classes of skew braces (G, -, 0)

- classes of regular subgroups of Hol(G) under conjugation by
elements of Aut(G).
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SB we study

regular subgroups of the holomorph
of a group G

Caranti, Dalla Volta 2018

G = (G, ") group. The following are equivalent:
@ A regular subgroup N < Hol(G)
@ A group operation o on G st (G,-,0)isa SB, (G,0) ~ N
© A map v : G — Aut(G) such that

v(g"" - h) = v(g)y(h)  (GFE)

Y GFon G ~ ~N=1ele): g€ G}

— " 0" given by goh=g""Mp
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In order to enumerate both the HGS on Galois extensions and the
SB we study

Gamma Functions
on a group G

HGS
_ [Auw(D)]
e(l,G) = me(r, G),
=|{y GFon G : (G,0) =T}
SB

(G, -); there is a bijective correspondence between
- isomorphism classes of skew braces (G, -, 0)

- classes of gamma functions under "conjugation" by elements
of Aut(G): v°(g) = a'4(g% o
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Groups of order p%q

Groups of order p?q and their automorphism groups

Type | Conditions G Aut(G)
1 sz X Cq Cp(pfl) X Cq_l
2 plg—1 Cq xpCp Cp x Hol(Cq)
3 p?lqg-—1 Cq 1 Cp2 Hol(Cq)
4 qglp—1 Cp2 X Cyq Hol(C2)
5 Cp x Cp x Cq GL(2, p) x Cq—1
6 qglp—1 Cp % (Cp x Cyq) Cp—1 x Hol(Cp
7 qglp—1 (Cp x Cp) X5 Cq Hol(Cp x Cp)
8 [3<q|p—1/|(CpoxCp)xpoCq Hol(Cp) x Hol(Cp)
9 |2<q|p—1](ChxCp)xp1Cq | (Hol(Cp) x Hol(Cp)) x Co
10 |2<qlp+1| (CoxCp)xcCq | (CpxCp)x(Cpry Cz)
11 plg—1 (Cq x Cp) x Cp Hol(C,,) x Hol(Cq)
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L/K Galois of order p?q, p > 2 and g distinct primes,
I = Gal(L/K). G group of order pq.

For gt p— 1, the numbers €'(I', G) are:

G

; 1 2 3

1 p 2pq 2q

2 | plp—1) 2p(pg—2q+1) 2q(p—1)

3 | PP(p—1)  2pq(p—1) 2(p’q—pq—q+1)

G

; 5 11
5 p° 2pq
11 | pP(p* —1) 2p(1+ gp® —2q)
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L/K Galois of order p?q, p > 2 and g distinct primes,
I = Gal(L/K). G group of order pq.

For gt p— 1, the numbers €'(I', G) are:

G ?)
A 1 2 3
1 p 2pq 2q
2 | plp—=1) 2p(pg—2q+1) 2q(p—1)
3 [ pP(p—1) 2p°q(p—1) 2(p*q—pg—q+1)

h 5 11
5 p° 2pq
11 | pP(p* —1) 2p(1+ gp®—2q)
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First approach:

Theorem (Realizability)

Let G be a group of order p?°q and v a GF on G. If p > 2, G and
(G, o) have isomorphic Sylow p-subgroups.

- there always exists a Sylow p-subgroup H which is
~v(H)-invariant;
- this corresponds to have (H, o) isomorphic to a regular
subgroup of Hol(H);
CS19 : H cyclic (p > 2) = all regular subgrps of Hol(H) are cyclic;
FCC12 : H abelian of rank mwith m<p—1,or m=2and p=3 =
all the abelian subgrps of Hol(H) are isomorphic to H.

If I, G of order p?q, p > 2, have non isomorphic Sylow
p-subgroups,
e(l,G)=¢€(l,G)=0.
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Second approach:

Let G be a group, A < G, and v : A — Aut(G) a function. 7 is a
relative gamma function (RGF) on A if it satisfies the GFE and A is
v(A)-invariant.

Lemma (Morphisms)

G finite group, A< G and v : A — Aut(G) a function such that A
is v(A)-invariant. Any two of the following conditions imply the
third one:

- Y([AA(A)]) = {1}
- v:A— Aut(G) is a morphism.
- v satisfies the GFE.
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Second approach:

Let G be a group, A < G, and v : A — Aut(G) a function. 7 is a
relative gamma function (RGF) on A if it satisfies the GFE and A is
v(A)-invariant.

Lemma (Morphisms)

G finite group, A< G and v : A — Aut(G) a function such that A
is v(A)-invariant. Any two of the following conditions imply the
third one:

- Y([AAA]) = {1} ([x, 7] =x"X) x,y € A)
-v:A— Aut(G)is a morphlsm.
- v satisfies the GFE.
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Third approach:

Proposition (Lifting and restriction)
G finite group, A, B < G such that G = AB.
@ v GF on G and B < ker(v) = y(ab) = v(a"®) )y (b) = (a)

= 7(6) = 7(A).

If Ais y(A)-invariant, then 44 : A — Aut(G) is a RGF on A
and ker(7) is invariant under {+/(a)c(a) : a € A} < Aut(G).
o If v/ : A— Aut(G) is a RGF such that

Q Y(AnB)=1,
@ B is invariant under {7/(a):(a) : a € A}.

Then ~(ab) = ~+/(a) is a GF on G, and ker(y) = ker(y')B.
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Third approach:

Proposition (Lifting and restriction)
G finite group, A, B < G such that G = AB.
@ v GF on G and B < ker(v) = y(ab) = v(a"®) )y (b) = (a)

= 7(6) = 7(A).

If Ais y(A)-invariant, then 74 : A — Aut(G) is a RGF on A
and ker(7) is invariant under {+/(a)c(a) : a € A} < Aut(G).
o If v/ : A— Aut(G) is a RGF such that
Q Y(AnB)=1,
@ B is invariant under {7/(a):(a) : a € A}.
Then ~(ab) = ~+/(a) is a GF on G, and ker(y) = ker(y')B.

Example: p| g —1, G of type 1, B g-Sylow. Necessarily
B < ker(y); moreover A, the p-Sylow, is characteristic = v <> 7|4
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Fourth approach:

Proposition (RGF on cyclic subgroups)
G finite group, A = (a) a cyclic subgroup of G of order p” (p odd).
Let n € Aut(G). The following are equivalent.

© There is a RGF v : A — Aut(G) such that y(a) = n.

© o Ais p-invariant, and
e ord(n) | p".
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Fourth approach:

Proposition (RGF on cyclic subgroups)
G finite group, A = (a) a cyclic subgroup of G of order p” (p odd).
Let n € Aut(G). The following are equivalent.

@ There is a RGF v : A — Aut(G) such that y(a) = 7.

© o Ais p-invariant, and
o ord(n) | p".

Example: p | g—1, G of type 1, B g-Sylow. Necessarily B < ker(~);
moreover A, the p-Sylow, is characteristic = v <> 7|a;

VA A— Aut(G) = Cp(pfl) X Cq_l

p>ifpllqg—1

|GF| = |elements of order | p2 in Aut(G)| = "
pPPifp’lg—1
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For gt p— 1, the numbers €'(I', G) are:

G
: 1 2 3
1 p 2pq 2q
p(p—1) 2p(pg—2q+1) 2q(p—1)
3 | PP(p—1)  2p%q(p—1) 2(p’q—pg—q+1)
G
h 5 11
5 p° 2pq
11 | p*(p* —1) 2p(1+gp®—2q)

a“toboa= 3_7(3)717@)7(3)[)7(3)3
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For gt p— 1, the numbers €'(I', G) are:

G
: 1 2 3
1 p Pq q
p(p—1) 2p(pg—2q+1) q(p—1)
3 | P(p—1) p’q(p — 1) (PPq—pqg—q+1)
G
h 5 11
5 p° Pq
11 | pP(p* —1) 2p(1+ gp® —2q)




Fifth approach:
Duality: p(G)™ = \(G), where inv : x — x7 1,
@ the GF associated to the RRR p(G) is y(x) =1
o the GF associated to the LRR A\(G) is y(x) = ¢(x71):

u(x"1)p(x) A(X)

Y =xXy=Yy )

If N < Hol(G) is a regular subgroup corresponding to -y, then NV
is another regular subgroup of Hol(G), which corresponds to

F(x) = 7 (xe(x 7).
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Fifth approach:
Duality: p(G)™ = \(G), where inv : x — x7 1,
o the GF associated to the RRR p(G) is v(x) =1
o the GF associated to the LRR A\(G) is v(x) = t(x71):

YR gy A

More general:

If N < Hol(G) is a regular subgroup corresponding to v, then N
is another regular subgroup of Hol(G), which corresponds to

F(x) = 9(xHulx7H).




(i) Forgtp—1:

a
r ! ’ ’
1T [p 2p(p - 1) 2p(p — 1)
2 | pe 2p(pg—29+1) 2pg(p — 1)
3 |pg 2palp—1)  20*¢—pg—q+1)
G
> 5 11
5 | p 2p(p" — 1)
11| p*q 2p(1+ qp® - 2q)

(ii) For gtp—land ¢ |p+ 1:

G
: 10
5 plp—1)(g—1)
10 2+ 2p%(q—3) —p* +p!
(iii) Forgq|p—1:
[N !
) 2p(q - 1)
P 20p% -2 +1)
Ifqg=2,
G
] ’? s !
57 2o+ pEp+1)
6 | 2p(p+1) P(3p -t 1)
7P 221 24p(p+)E2p-1)




If g =3,

G 5
R 5 6 7 9
5 P ap(p+1) 2p(3p+1) ap(p+1)
6 P 2p(p +3) 4p(p +1) p(3p+5)
7 »’ 2°(p+1)* 2+ 7207 +3p+2) pp+1)*
9 | pPP2p-1) 4p(p®+1) 2(2p°+3p*—2p+1) 24 2p+p*(p+3)
1fq>3,
G
r 5 6
5 P 2p(p+1)(g—1)
6 P 2p(p +2q - 3)
7 72+ g —2p+ 1)
8, Gs P Ap(p’ +pg—3p+1)
8. GGy | P> Ap(p* +pg—3p+1)
9 P A’ +pg—3p+1)
G
B 7 9
5 PBp+1)(g—1) 2p(p+1)(g—1)
6 4(p* +pg — 2p) p(dg+3p—T7)
7 24P 27 +pg+2g—4)  plp+1)(P*(2q - 5)+2p+1)
8, Gy 2p(p*q —4p +pg +2) P(p* +3p? — 14p + dpg — 6)
8, Gy Gy 4p(2p® — 5p + pg +2) P(p* + 5p* — 18p + dpq + 8)
9 204p* — 9 + 2%+ 2p +1) 2+ 4p +p*(p” + 5p + 4q — 16)
& G#Gas G~Gisg>5 GGoq=5
5 dpp+1)(g—1) aplp+1)(g—1) 16p(p + 1)
6 8pla+p—2)  Bla+p-2) 8p(p+3)
T | 4P+ D(pg—3p+2) 4pPp+1)(pg—3p+2) 8p%(p+1)*
8 Table 2 Table 1 4(1+p+3p°(p+ 1))
9 | 8p(20° +pg—5p+2)) 4p(3p* +2pq—8p+3) 16p(2p* —2p+p+1)




Table 1: G and I of type 8, G >~ Gy, for k = £2,
r

ifqg>T:

G2
G, Gy

Gy
Gy # G2,G3,G3.Gy

2(1+5p +4p%q — 1797 + %)
2(Tp + dpPq — 18p% + Tp)

2(1 4 6p + 4p?q — 19p* + 8p*)

8(2p + p?q — 5p* + 2p*)

T ifg="1:

G 2(1+5p + 11p% + 7p%)

(e 2(1 + 4p + 13p* + 6p*)

Table 2: G'and T of type 8, G ~ G, # Gio

T if either k or k=" is a solution of 2% — z — 1
G Gir 2(1+bp + dp%q — 17> + 7p°)
Grix 4(3p + 2p%q — 8p* + 3p°)
G # Gk, Grak, Giok 8(2p + p*q — 5p° + 2p%)
T if & and k™1 are the solutions of 2% 4 x + 1 = 0:
Gy 2(1 + 6p + 4p%q — 1907 + &)
Grog, Groj 2(7p + 4p?q — 18p* + Tp*)
Gk 2(1+ 4p + dp*q — 15p? + 6p°)

Gy # Ghy Grans Grog, Grj

8(2p + p*q — 5p* + 2p*)

r

if k and k= are the solutions of 2% — z +1 = 0:

Gk
Gk Gy

1k
Gy # Goiy Gioky Grahy Grypt

2(1+ 6p + 4p>q — 1997 + 8°)
2(7p + dp*q — 18p* + 7p%)
2(1 + 4p + 4p*q — 15p + 6p°)
8(2p +p*q — 5p° + 2p%)

r

if k and k=" are the solutions of #? + 1 = 0:

G A1+ 2p+ 297 — 997 + 4p%)
Gk, Grok A(3p + 2p%q — 82 + 3pP)
Gy % G, Grin, Gk S2p -+ P 52 + 20%)
r iR £ k1,1

G Gt 2(1+6p + 4pq — 197 + 8p°)

Gk, Grpps Grok, G
Gs # G, Grak: Grag1

2(7p+ 4pq — 18p* + %)
8(2p +p*q — 5p* + 2p%)




Thank you for the attention!
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